Geek blog series - part 3
29 juli 2019 [04:07], 1420 views
Door Redactie

Geek blog series - part 3

In this ‘Geek blog series’ these 'Geeks’ share their expertise and insights on the latest AI and Analytics topics. Below you will find the third part of this series.

Image classification? Use DLPy

By Jaimy van Dijk

Everybody is busy nowadays. Some might say that we need better work-life management. I say, let’s focus on automating some of our work! Take for instance all kind of controlling tasks, such as controlling if the usage of the company logo in vlogs and presentations is okay. Or controlling whether all products are straight on the packaging line so that the machine can pack them correctly. But there is good news. You can automate these tasks with computer vision, which means: extracting information from images using SAS DLPy, which stands for SAS Deep Learning in Python. This allows users to build deep learning models using friendly high-level API’s.

To show you how this works, we build a deep learning model based on Conventional Neural Networks (CNN) for image classification called: Geek/No Geek (also read this blog). We learned the model that geeks often do dress a bit strange. They wear striking glasses, suspenders, bowties and other eye-catching items. Using these attributes the model can classify people to be geeks or not. 

Using model interpretation techniques we can see that the model focuses on the face, presumably to find glasses, and on bright colors. Of course, you need to monitor the model over time. Since fashion changes the model will need to change over time as well.

I wish you good luck in training your own model for image classification. Questions? Don’t hesitate to reach out to me via LinkedIn.

LIME and ICE: The Secret Ingredients in your AI Cocktail

By Véronique Van Vlasselaer

The world of Machine Learning and Artificial Intelligence is growing more rapidly than ever before. Creative AI ideas sprout at an unbeatable pace, organizations are exploring the new emerging opportunities of Machine Learning and AI. Without realizing, machines are making millions of automated decisions without any human intervention to date, facilitating and augmenting people’s day-to-day life. But then the question arises: can we trust decisions made by AI? The most powerful algorithms that steer our daily life are typically so-called black box models. These are models that we as human beings cannot understand easily. The rationale and the logic of each decision is hidden in (often) billions of mathematical formulas, which are hard to unravel. On the other hand, we have white box models, where the logic behind each decision is easily explainable. Unfortunately, the performance of those white box models is often unsatisfactory. It seems that the modern data scientist has to make an impossible choice: a choice between accuracy and interpretability.

But is that true? Do we have to choose between the accuracy of a black box model on the one hand and explainability, fairness, accountability and trustworthiness of white box models on the other hand? Can’t we have both: explainable and accurate models? Yes, we can. Nowadays, lots of academic research is centered around the interpretability of black box models. Typically, interpretability techniques can be classified into two categories:
(1) techniques to explain the prediction of each individual observation.
(2) techniques that reveal the impact of each of the inputs or variables to the prediction.
And within SAS you have many options for this, amongst which LIME and ICE.

On individual observation level, you can use LIME. This stands for Local Interpretable Model-agnostic Explanations. For each individual prediction it generates an explanation: why did an observation receive that prediction? More specifically, LIME will fit for each observation a local model using the predicted value of the observation and nearby observations. The local model is a white box model, typically a LASSO regression. LIME will report on the values of the coefficients for the parameter estimates of the variables when using such a localized linear regression model.

Read also my blog about the GeekNoGeek App that we have developed to calculate someone’s geekiness score (i.e., a probability on how geeky you are) based on their profile picture. 

To explain the impact of the predictors to the prediction you can use ICE, which stands for Individual Conditional Expectation. ICE analyses what would happen to the predicted value of one observation if we change the value of one of the input variables. Take for instance color: what happens with the result if you adjust the color intensity of your picture?

Are you struggling with explaining the results of your black box models and need some help? Feel free to reach out to me via LinkedIn or Twitter.

Learn more

Want to learn more? Hear our stories during the Talk of the Geeks at the World Summit AI from Oct. 10 in Zaandam. The number of seats is limited! To secure your seat, please let us know in advance. If you can’t make it from Oct 10, join us at Analytics Experience from Oct. 21-23 in Milan.

 

Reacties

Wapen je tegen betalingsfraude door een sterkere authenticatie
20 november 2019 [11:01], 126 views

Wapen je tegen betalingsfraude door een sterkere authenticatie

Het gebruik van innovatieve technologieën zoals kunstmatige intelligentie om fraude te bestrijden is een haalbare en effectieve oplossing.

 

Lees meer  

E-health hub houdt zorg betaalbaar en voorkomt eenzaamheid
13 november 2019 [09:00], 189 views

E-health hub houdt zorg betaalbaar en voorkomt eenzaamheid

E-health hub houdt zorg betaalbaar en voorkomt eenzaamheid.

 

Lees meer  

Inzet open source modellen voor slimmere en snellere beslissingen
12 november 2019 [03:11], 211 views

Inzet open source modellen voor slimmere en snellere beslissingen

Met de introductie van SAS Open Model Manager helpt SAS organisaties bij het operationaliseren van open source modellen voor slimmere, snellere zakelijke beslissingen.

 

Lees meer  

SaasNow nu ook beschikbaar via public cloud
22 oktober 2019 [02:32], 772 views

SaasNow nu ook beschikbaar via public cloud

SAS partner Notilyze, leverancier van analytics as a service, maakt SaasNow nu ook beschikbaar via de public cloud. 

 

Lees meer  

Meer rendement uit analytics-investering met ModelOps
21 oktober 2019 [10:46], 899 views

Meer rendement uit analytics-investering met ModelOps

Volgens IDC slaagt slechts 35% van organisaties erin om analytische modellen volledig in productie te nemen. Dit resulteert in onnodige inspanningen en verspilling van gel [...]

 

Lees meer  

KNVB en SAS maken één-tweetje om voetbaldoelgroepen te binden
23 september 2019 [06:33], 1730 views

KNVB en SAS maken één-tweetje om voetbaldoelgroepen te binden

SAS gaat met haar Customer Intelligence-oplossingen de KNVB en dochterorganisatie Voetbalmedia helpen om de miljoenen voetballiefhebbers nog persoonlijker te b [...]

 

Lees meer  

Kwaliteit voorspellen met de Smart Industry Assistant
30 augustus 2019 [11:27], 2174 views

Kwaliteit voorspellen met de Smart Industry Assistant

Bright Cape heeft de Smart Industry Assistant (SIA) ontwikkeld om de hoeveelheid productieafval te reduceren en de winstgevendheid te verhogen. 

 

Lees meer  

Geek blog series - part 3
29 juli 2019 [04:07], 1421 views

Geek blog series - part 3

In this ‘Geek blog series’ these Geeks share their expertise and insights on the latest AI and Analytics topics. Read the third part of this series.

 

Lees meer  

Geek blog series - part 2
22 juli 2019 [03:48], 1815 views

Geek blog series - part 2

In this ‘Geek blog series’ these ‘Geeks’ share their expertise and insights on the latest AI and Analytics topics. Read now the blogs of the second part of this series.

 

Lees meer  

Geek blog series - part 1
15 juli 2019 [03:17], 1449 views

Geek blog series - part 1

 In this ‘Geek blog series’ these ‘Geeks’ share their expertise and insights. A must-read for everyone who likes to learn more about data scien [...]

 

Lees meer