Geek blog series - part 3
29 juli 2019 [04:07], 957 views
Door Redactie

Geek blog series - part 3

In this ‘Geek blog series’ these 'Geeks’ share their expertise and insights on the latest AI and Analytics topics. Below you will find the third part of this series.

Image classification? Use DLPy

By Jaimy van Dijk

Everybody is busy nowadays. Some might say that we need better work-life management. I say, let’s focus on automating some of our work! Take for instance all kind of controlling tasks, such as controlling if the usage of the company logo in vlogs and presentations is okay. Or controlling whether all products are straight on the packaging line so that the machine can pack them correctly. But there is good news. You can automate these tasks with computer vision, which means: extracting information from images using SAS DLPy, which stands for SAS Deep Learning in Python. This allows users to build deep learning models using friendly high-level API’s.

To show you how this works, we build a deep learning model based on Conventional Neural Networks (CNN) for image classification called: Geek/No Geek (also read this blog). We learned the model that geeks often do dress a bit strange. They wear striking glasses, suspenders, bowties and other eye-catching items. Using these attributes the model can classify people to be geeks or not. 

Using model interpretation techniques we can see that the model focuses on the face, presumably to find glasses, and on bright colors. Of course, you need to monitor the model over time. Since fashion changes the model will need to change over time as well.

I wish you good luck in training your own model for image classification. Questions? Don’t hesitate to reach out to me via LinkedIn.

LIME and ICE: The Secret Ingredients in your AI Cocktail

By Véronique Van Vlasselaer

The world of Machine Learning and Artificial Intelligence is growing more rapidly than ever before. Creative AI ideas sprout at an unbeatable pace, organizations are exploring the new emerging opportunities of Machine Learning and AI. Without realizing, machines are making millions of automated decisions without any human intervention to date, facilitating and augmenting people’s day-to-day life. But then the question arises: can we trust decisions made by AI? The most powerful algorithms that steer our daily life are typically so-called black box models. These are models that we as human beings cannot understand easily. The rationale and the logic of each decision is hidden in (often) billions of mathematical formulas, which are hard to unravel. On the other hand, we have white box models, where the logic behind each decision is easily explainable. Unfortunately, the performance of those white box models is often unsatisfactory. It seems that the modern data scientist has to make an impossible choice: a choice between accuracy and interpretability.

But is that true? Do we have to choose between the accuracy of a black box model on the one hand and explainability, fairness, accountability and trustworthiness of white box models on the other hand? Can’t we have both: explainable and accurate models? Yes, we can. Nowadays, lots of academic research is centered around the interpretability of black box models. Typically, interpretability techniques can be classified into two categories:
(1) techniques to explain the prediction of each individual observation.
(2) techniques that reveal the impact of each of the inputs or variables to the prediction.
And within SAS you have many options for this, amongst which LIME and ICE.

On individual observation level, you can use LIME. This stands for Local Interpretable Model-agnostic Explanations. For each individual prediction it generates an explanation: why did an observation receive that prediction? More specifically, LIME will fit for each observation a local model using the predicted value of the observation and nearby observations. The local model is a white box model, typically a LASSO regression. LIME will report on the values of the coefficients for the parameter estimates of the variables when using such a localized linear regression model.

Read also my blog about the GeekNoGeek App that we have developed to calculate someone’s geekiness score (i.e., a probability on how geeky you are) based on their profile picture. 

To explain the impact of the predictors to the prediction you can use ICE, which stands for Individual Conditional Expectation. ICE analyses what would happen to the predicted value of one observation if we change the value of one of the input variables. Take for instance color: what happens with the result if you adjust the color intensity of your picture?

Are you struggling with explaining the results of your black box models and need some help? Feel free to reach out to me via LinkedIn or Twitter.

Learn more

Want to learn more? Hear our stories during the Talk of the Geeks at the World Summit AI from Oct. 10 in Zaandam. The number of seats is limited! To secure your seat, please let us know in advance. If you can’t make it from Oct 10, join us at Analytics Experience from Oct. 21-23 in Milan.

 

Reacties

Dit zijn de hoogtepunten van de Analytics Experience
31 oktober 2017 [10:05], 7650 views

Dit zijn de hoogtepunten van de Analytics Experience

De oprichter en CEO van SAS, Jim Goodnight, was er duidelijk over tijdens de Analytics Experience: “We leven in een nieuwe democratie van analytics. De macht van dat [...]

 

Lees meer  

Hoe optimaliseer en verduurzaam je asset management met data?
10 oktober 2017 [03:36], 2809 views

Hoe optimaliseer en verduurzaam je asset management met data?

De civiele infrastructuur in Nederland komt steeds verder onder druk te staan. We moeten daarom slim omgaan met ruimte en assets efficiënt inzetten. Maa [...]

 

Lees meer  

Oplossing voor zelfvarende schepen wint innovatieprijs World Port Hackathon
5 september 2017 [04:07], 5304 views

Oplossing voor zelfvarende schepen wint innovatieprijs World Port Hackathon

Hoe maak je de haven veilig voor zelfvarende schepen? Voor deze vraag stonden data-professionals tijdens de World Port Hackathon 

 

Lees meer  

IDC bevestigt leiderschap SAS in advanced en predictive analytics
4 september 2017 [01:37], 1763 views

IDC bevestigt leiderschap SAS in advanced en predictive analytics

Met een marktaandeel van 30,5 procent heeft SAS heeft zijn leiderschapspositie op het gebied van predictive en advanced analytics wederom versterkt. 

 

Lees meer  

SUEZ stroomlijnt interne processen met data en analytics
1 september 2017 [02:24], 2138 views

SUEZ stroomlijnt interne processen met data en analytics

SUEZ is een internationale specialist op het gebied van de inzameling, transport en verwerking van afval en producent van grondstoffen. Om rapportages te standaardis [...]

 

Lees meer  

Hoe profiteren artsen en patiënten van analytics in de zorg?
10 augustus 2017 [09:45], 3337 views

Hoe profiteren artsen en patiënten van analytics in de zorg?

Iedere branche digitaliseert in hoog tempo. Het toepassen van data en analytics speelt daarbij een belangrijke rol. Wat betekent dit voor de zorgprofessional en pati [...]

 

Lees meer  

Wat is de vrouwen-voetbalhoofdstad van Nederland?
1 augustus 2017 [11:33], 2541 views

Wat is de vrouwen-voetbalhoofdstad van Nederland?

Het Europees Kampioenschap vrouwenvoetbal nadert zijn hoogtepunt. Wat is eigenlijk de status van de sport onder vrouwen en meisjes in ons land? De KNVB maakte [...]

 

Lees meer  

Analytics Experience 2017: Hoe realiseer je digitale transformatie met analytics?
24 juli 2017 [04:02], 2603 views

Analytics Experience 2017: Hoe realiseer je digitale transformatie met analytics?

Technologische ontwikkelingen zorgen er in iedere branche voor dat de kaarten opnieuw worden geschud. Van 16-18 oktober hoor je tijdens de Analytics Exp [...]

 

Lees meer  

De hoogtepunten van SAS Forum 2017
16 juni 2017 [09:33], 2788 views

De hoogtepunten van SAS Forum 2017

‘Experience Your New Possible’ was het thema van SAS Forum dit jaar. Tijdens het event hoorden ruim 1200 aanwezigen van verschillende innovatieve organi [...]

 

Lees meer  

Notilyze introduceert Data Science as a Service
15 juni 2017 [02:19], 2224 views

Notilyze introduceert Data Science as a Service

Startup Notilyze gaat data science-diensten via het cloud-platform SAS Viya aanbieden. Met een managed services-model voor analytics-software, hebben on [...]

 

Lees meer